Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'maximin':
Найдено статей: 10
  1. Рассматривается игровая задача на максимин функции платы, определенной на произведении множеств притяжения терминальных состояний систем первого и второго игрока. Данные множества притяжения найдены с помощью конструкций расширения в классе конечно-аддитивных мер.

    We consider a game problem of maximin of cost function defined on the product of attraction sets of players’ dynamic systems terminal positions. These sets are constructed using the extension in the class of finitely additive measures.

  2. Жуковский В.И., Солдатова Н.Г.
    К задаче диверсификации вклада по трем депозитам, с. 55-61

    Каким образом вкладчику распределить в банке свой вклад между рублевым и двумя валютными депозитами (в долларах и евро), чтобы через год получить наибольший доход? Причем вкладчику, естественно, неизвестен курс каждой из валют в конце года и ориентируется он лишь на коридор изменения такого курса. Ответ на этот вопрос кроется в распределении между депозитами лишь одного рубля. Решению последней задачи для рискофоба и посвящена предлагаемая статья.

    In what way the depositor should allocate his deposit in the bank taking into account one-rouble deposit and two currency deposits (in dollars and euro) in order to get the largest income in a year? The rate of exchange in the end of the year is unknown as a rule and the depositor orients himself towards the boundaries of changing of such rate. The allocation between the deposits of one ruble only is the answer of the question. The article which we suggest is devoted to the solution of the latter problem for a riskofob.

  3. В теории игр и теории исследования операций часто появляется минимакс от функции $f(x,y)$, зависящей от двух векторных переменных $x$, $y$. Изучению свойств минимакса (или максимина) посвящено много работ. Минимакс можно трактовать как наименьший гарантированный результат для минимизирующего игрока (минимизирующей оперирующей стороны). При изучении минимаксных задач определенный интерес представляют различные вопросы о корректности. Одному из таких вопросов посвящена настоящая статья. В ней векторы $x$, $y$ принадлежат компактам $P$, $Q$ из соответствующих евклидовых пространств $R^k$, $R^l$, а функция $f(x,y)$ непрерывна на произведении пространств $R^k\times R^l$. В статье рассматривается вопрос о зависимости минимакса от малых изменений компактов $P$, $Q$ в метрике Хаусдорфа. Обосновывается непрерывность зависимости минимакса от малых вариаций множеств $P$, $Q$.

    Nikol'skii M.S.
    On one correctness problem for minimax, pp. 275-280

    In game theory and operations research theory, a minimax often appears for a function $f(x,y)$ that depends on two vector variables $x$, $y$. Many works have been devoted to the study of the properties of minimax (or maximin). A minimax can be interpreted as the smallest guaranteed result for the minimizing player (the minimizing operator). In the study of minimax problems, various correctness issues are of some interest. This paper is devoted to one of these issues. In it, vectors $x$, $y$ belong to compacts $P$, $Q$ of corresponding Euclidean spaces $R^k$, $R^l$, and function $f(x,y)$ is continuous on product of spaces $R^k\times R^l$. The paper considers the dependence of minimax on small changes of compacts $P$, $Q$ in the Hausdorff metric. The continuity of the dependence of minimax on small variations of compacts $P$, $Q$ is proved.

  4. В задачах принятия решений, когда лицо, принимающее решение, получает информацию о возможном выигрыше в результате выбора стратегии в виде нечеткого числа, возникает проблема сравнения нечетких чисел. При выборе того или иного метода сравнения нечетких чисел нужно исходить из специфики задачи. Предлагаемый в статье подход сравнения нечетких чисел основан на сравнении множеств уровня. Эти множества уровня являются отрезками. При сравнении отрезков, в которых может находиться величина выигрыша лица, принимающего решение, берется один из критериев, применяемых в задачах принятия решения при наличии неопределенности (критерии Вальда, Сэвиджа, Гурвица и другие). Результаты сравнения по множествам уровня усредняются. Нечеткие числа сравниваются с помощью этих средних значений. Дана геометрическая интерпретация полученного результата, которая сводит сравнение нечетких чисел к сравнению величин площадей соответствующих фигур, образованных графиками функций принадлежности нечетких чисел. В качестве примера рассмотрены нечеткие числа с колоколообразными и трапецеидальными функциями принадлежности.

    Ukhobotov V.I., Mihailova E.S.
    Comparison of fuzzy numbers in decision-making problems, pp. 87-94

    The paper deals with decision-making problems, when a decision maker receives information about possible pay-off as a result of a strategy selection. This information can be given as a fuzzy number and the problem of its comparison appears. A specific character of the problem is a main factor to choose the method of the fuzzy numbers comparison. In this paper an approach of comparing fuzzy numbers has been proposed, it’s based on the comparison of $\alpha$-cuts. These $\alpha$-cuts are segments. During the comparison of the segments, each segment can contain a merit value; one of the decision-making criteria is chosen (Wald's maximin model, Regret theory models, Routh-Hurwitz stability criterion etc.). The results of the comparison are averaged out. Fuzzy numbers are compared according to these mean values. According to geometrical interpretation which has been given, the comparison of fuzzy numbers is equivalent to the comparison of figures' areas. These areas are formed by graphics of membership functions of the fuzzy numbers. As an example trapezoidal and bell-shaped fuzzy numbers are examined.

  5. Рассматривается игровая задача на максимин в условиях последовательного ослабления моментных ограничений. Конструируется расширение в классе конечно-аддитивных мер, реализующее асимптотику значений максимина при нарастающей точности соблюдения ограничений. Установлены эффективно проверяемые достаточные условия устойчивости «по максимину» (при ослаблении моментных ограничений).

    The maximin game problem under sequential weakening of moment constraints is considered. The extension in the class of finitely additive measures realizing the asymptotic of maximin is constructed. The effectively verifiable sufficient conditions of stability «by maximin» is established.

  6. Рассматривается линейная игровая задача управления на максимин с ограничениями асимптотического характера (ОАХ), которые естественно возникают в связи с реализацией «узких» управляющих импульсов. В содержательном отношении это соответствует импульсным режимам управления с полным расходованием топлива. Возникающая игровая задача отвечает использованию асимптотических режимов управления обоими игроками, что отражено в концепции расширения, реализуемой в классе конечно-аддитивных мер. Исходная содержательная задача управления для каждого из игроков рассматривается как вариант абстрактной постановки, связанной с достижимостью при ОАХ, для которой построена соответствующая обобщенная задача о достижимости и установлено представление множества притяжения (МП), играющее роль асимптотического аналога области достижимости в классической теории управления. Данная конкретизация реализуется для каждого из игроков, на основе чего получается обобщенный максимин, для которого затем указан вариант асимптотической реализации в классе обычных управлений. Получено «конечномерное» описание МП, позволяющее находить упомянутый максимин с применением численных методов. Рассмотрено решение модельного примера задачи об игровом взаимодействии двух материальных точек, включающее этап компьютерного моделирования.

    Chentsov A.G., Savenkov I.I., Shapar J.V.
    A problem of program maximin with constraints of asymptotic nature, pp. 91-110

    We consider a linear game control problem for maximin with asymptotic constraints, which naturally arise in connection with the realization of “narrow” control pulses. In terms of content, this corresponds to pulsed control modes with full fuel consumption. The emerging game problem corresponds to the use of asymptotic control modes by both players, which is reflected in the expansion concept realized in the class of finitely additive measures. The original content control problem for each of the players is considered as a variant of abstract formulation related to attainability under asymptotic constraints, for which the corresponding generalized attainability problem is constructed and the representation of the attraction set playing the role of an asymptotic analogue of an attainability domain in the classical control theory is established. This concretization is realized for each of the players, on the basis of which a generalized maximin is obtained, for which a variant of the asymptotic realization in the class of ordinary controls is indicated. A “finite-dimensional” description of the attraction set is obtained, which makes it possible to find maximin using numerical methods. The solution of a model example of the problem of game interaction of two material points, including the stage of computer modeling, is considered.

  7. Исследуются нелинейная дифференциальная игра (ДИ) сближения-уклонения, а также релаксации игровой задачи сближения (имеется в виду ослабление условий окончания игры сближения). Рассматривается вариант метода программных итераций, реализуемый в пространстве функций и доставляющий в пределе функцию цены ДИ на минимакс-максимин для специальных функционалов траектории. Данная предельная функция реализует для каждой позиции игры наименьший размер окрестности целевого множества, для которого при пропорциональном ослаблении фазовых ограничений игрок, заинтересованный в сближении, еще гарантирует его осуществление. Исследуются свойства вышеупомянутых функционалов и предельной функции. В частности, получены достаточные условия реализации значений данной функции при выполнении конечного числа итераций.

    Nonlinear differential game (DG) is investigated; relaxations of the game problem of guidance are investigated also. The variant of the program iterations method realized in the space of position functions and delivering in limit the value function of the minimax-maximin DG for special functionals of a trajectory is considered. For every game position, this limit function realizes the least size of the target set neighborhood for which, under proportional weakening of phase constraints, the player interested in a guidance yet guarantees its realization. Properties of above-mentioned functionals and limit function are investigated. In particular, sufficient conditions for realization of values of given function under fulfilment of finite iteration number are obtained.

  8. В работе строится расширение конфликтно-управляемых задач на бесконечном промежутке. Соответствующее расширение является проективным пределом сужений исходной игры на ограниченные промежутки времени. Существование максимина в такой расширенной игре эквивалентно нечувствительности исходной игры к расширению целевого множества. Особое внимание в работе уделяется игре сближения-уклонения в паре "смешанное управление / обобщенное управление".

    The extension of a conflict control problem with infinite horizon is constructed. This extension is the projective limit of restricted games. Relations between "sensitivity to target set" and the existence of the optimal control are studied. Special attention is paid to the pursuit-evasion game with "joint control / relaxed control".

  9. Рассматривается абстрактная игровая задача управления и ее релаксации, связанные с ослаблением ограничений на выбор программных стратегий. В последнем случае реализуется серия задач на максимин, для которых множества допустимых стратегий каждого из участников образуют направленную систему. Устанавливается, что значения реализуемого (при каждом конкретном варианте ослабления условий) максимина обладают свойством сходимости и указывается представление обобщенного предела упомянутых значений.

    The abstract game problem of control and its relaxations connected with a weakening of constraints on the choice of programmed strategies are considered. In this case, the series of maximin problems is realized; for this series, the sets of admissible strategies of participants form directed systems. It is established that realized maximins are convergent. The representation of the corresponding generalized limit is established.

  10. Рассматривается задача Коши для уравнения Гамильтона Якоби с гамильтонианом, зависящим только от импульсной переменной. Получены оценки для минимаксного (и/или вязкостного) решения этой задачи в случае кусочной линейности гамильтониана или краевой функции. Предлагаемые оценки дают явные формулы для минимаксного решения, если входящие в них «минимаксы» и «максимины» совпадают.

    The Cauchy problem is considered for the Hamilton Jacobi equation with Hamiltonian depending on the impulse variable only. Estimations have been obtained for the minimax (and/or viscosity) solution to this problem in the case of piecewise linearity of the Hamiltonian or the border function. The proposed estimations provide explicit formulas for the minimax solution, if «minimaxes» and «maximins» contained in them coincide.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref