Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'point vortex':
Найдено статей: 9
  1. В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.

    We consider a system which consists of a circular cylinder subject to gravity interacting with a point vortex in a perfect fluid. In contrast to previous works, in this paper the circulation about the cylinder is assumed to be zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. Using autonomous integral we reduce the order of the system by one degree of freedom in a case of zero circulation which early was not considered. Unlike nonzero circulation in the absence of point vortices when the cylinder moves inside a certain horizontal stripe it is shown that in the presence of vortices and with circulation equal to zero a vertical coordinate of the cylinder is unbounded decreasing. We then focus on the numerical study of dynamics of our system. In a case of zero circulation trajectories are noncompact. The different kinds of the scattering function of the vortex by cylinder were obtained. The form of these functions argues to chaotic behavior of the scattering which means that an additional analytical integral is absent.

  2. В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.

    In this paper we consider an integrable Hamiltonian system on the Lie algebra $so(4)$ with an additional integral of the fourth degree - the Adler-van Moerbeke integrable case. We discuss classical works which explore, on the one hand, the dynamics of a rigid body with cavities completely filled with an ideal fluid performing a homogeneous vortex motion and, on the other hand, are devoted to the study of geodesic flows of left-invariant metrics on Lie groups. The equations of motion, the Hamiltonian function, Lie-Poisson brackets, Casimir functions and the phase space of the case under consideration are given. In previous papers, the investigation of the phase topology of the integrable Adler-van Moerbeke case was started: a spectral curve, a discriminant set and a bifurcation diagram of the moment map are explicitly shown, and characteristic exponents for determining the type of critical points of rank 0 and 1 of the moment map are presented. In this paper we present an algorithm for constructing Liouville tori. Examples are given of bifurcations of Liouville tori at the intersection of bifurcation curves for reconstructions of one torus into two tori and of two tori into two tori.

  3. В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.

    We consider a system which consists of a circular cylinder subject to gravity interacting with N vortices in a perfect fluid. Generically, the circulation about the cylinder is different from zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. We then focus on the study of a configuration of the Foppl type: a falling cylinder is accompanied with a vortex pair (N=2). Now the circulation about the cylinder is assumed to be zero and the governing equations are considered on a certain invariant manifold. It is shown that, unlike the Foppl configuration, the vortices cannot be in a relative equilibrium. A restricted problem is considered: the cylinder is assumed to be sufficiently massive and thus its falling motion is not affected by the vortices. Both restricted and general problems are studied numerically and remarkable qualitative similarity between the problems is outlined: in most cases, the vortex pair and the cylinder are shown to exhibit scattering.

  4. В данной работе получены уравнения движения пары вихрей и кругового профиля с параметрическим возбуждением, которое возникает за счет периодического движения материальной точки. Подобные плоские задачи, с одной стороны, носят модельный характер и не могут быть использованы для точного количественного описания реальных траекторий системы. С другой стороны, во многих случаях такие модели позволяют получить достаточно точную качественную картину динамики и, вследствие простоты, данные 2D модели позволяют оценить влияние различных параметров. Описаны относительные положения равновесия, обобщающие решения Феппля и коллинеарные конфигурации, в отсутствии движения материальной точки. Показано, что в окрестности относительных равновесий в случае периодического движения центра масс профиля образуется стохастический слой.

    In this paper we obtain equations of motion for a vortex pair and a circular foil with parametric excitation due to the periodic motion of a material point. Undoubtedly, such problems are, on the one hand, model problems and cannot be used for an exact quantitative description of real trajectories of the system. On the other hand, in many cases such 2D models provide a sufficiently accurate qualitative picture of the dynamics and, due to their simplicity, an estimate of the influence of different parameters. We describe relative equilibria that generalize Föppl solutions and collinear configurations when the material point does not move. We show that a stochastic layer forms in the neighborhood of relative equilibria in the case of periodic motion of the foil's center of mass.

  5. В работе применяется топологический подход для поиска и анализа устойчивости относительных равновесий для системы трех вихрей равной интенсивности в круговой области. Показано, что система трех вихрей допускает редукцию на одну степень свободы. Найдены две новые стационарные конфигурации - равнобедренная и коллинеарная несимметричная, построены бифуркационные диаграммы, проведен анализ устойчивости для этих случаев.

    In this paper, topological approach are used for searching and stability analysis of relative equilibriums for the system of three point vortices of equal in magnitude intensities. It is shown that the system of three point vortices can be reduced by one degree of freedom. We find the two new stationary configurations (isosceles and non-symmetrical collinear), study their bifurcations. The stability analysis is performed for these cases.

  6. В работе рассмотрены новый метод конструктивного понижения порядка для систем точечных вихрей на плоскости и сфере. Этот метод близок к классической процедуре исключения узла по Якоби в небесной механике. Однако, в случае динамики вихрей возникают некоторые особые ситуации, требующие отдельного рассмотрения. Более подробно рассмотрена задача приведения четырех точечных вихрей на плоскости и сфере.

    We offer a new method of reduction for a system of point vortices on a plane and a sphere. This method is similar to the classical node elimination procedure. However, as applied to the vortex dynamics, it requires substantial modification. Reduction of four vortices on a sphere is given in more detail.

  7. Для задачи двух точечных вихрей в кольце получено представление гамильтониана через эллиптические функции и исследована устойчивость томсоновской конфигурации.

    For the system of two point vortices in anulus the Hamiltonian is expressed in terms of elliptic functions. The stability of the Thomson configuration is studied.

  8. Рассмотрена динамика системы, описывающей управляемое движение неуравновешнного кругового профиля в присутствии точечных вихрей. Управление движением профиля реализуется за счет периодического изменения положения центра масс, гиростатического момента и момента инерции системы. Предложен вывод уравнений движения на основе подхода Седова, уравнения движения представлены в гамильтоновой форме. Рассмотрено периодическое возмущение известного интегрируемого случая.

    The dynamics of a system governing the controlled motion of an unbalanced circular foil in the presence of point vortices is considered. The foil motion is controlled by periodically changing the position of the center of mass, the gyrostatic momentum, and the moment of inertia of the system. A derivation of the equations of motion based on Sedov's approach is proposed, the equations of motion are presented in the Hamiltonian form. A periodic perturbation of the known integrable case is considered.

  9. Данная работа посвящена исследованию динамики следующих систем большого числа точечных вихрей на плоскости:
    - вихревые кольца с внешним радиусом r=1 и переменным внутренним радиусом r0,
    - вихревые эллипсы с полуосями a, b.
    Основное внимание уделено изучению асимптотического поведения (t→∞) систем и проверке критериев устойчивости для непрерывных распределений завихренности с помощью компьютерного эксперимента.

    With the help of mathematical modelling, we study the dynamics of many point vortices system on the plane. For this system, we consider the following cases:
    - vortex rings with outer radius r=1 and variable inner radius r0,
    - vortex ellipses with semiaxes a, b.
    The emphasis is on the analysis of the asymptotic (t→∞) behavior of the system and on the verification of the stability criteria for vorticity continuous distributions.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref