Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'resonator model':
Найдено статей: 10
  1. В работе изучается влияние шума на модель ферментативной реакции Голдбетера, описывающую механизм колебательного синтеза циклического аденозинмонофосфата в клетке. Показано, что модель отличается высокой чувствительностью к вариациям параметров и начальных условий. Демонстрируется и исследуется явление стохастической возбудимости в зоне устойчивого равновесия. Показано, что воздействие шума приводит к резкому переходу от малоамплитудных стохастических осцилляций к спайковым колебаниям большой амплитуды. Для параметрического анализа этого явления используются техника функций стохастической чувствительности и метод доверительных эллипсов. Изучена зависимость критического значения интенсивности шума, при котором начинается генерация большеамплитудных колебаний, от близости управляющего параметра к точке бифуркации. Для детального анализа частотных свойств стохастических колебаний проведен статистический анализ межспайковых интервалов и обнаружено явление когерентного резонанса.

    We study the influence of noise on the Goldbeter model of the enzymatic reaction, which describes the mechanism of oscillatory synthesis of cyclic adenosine monophosphate in a cell. It is shown that the model is highly sensitive to variations of parameters and initial conditions. The phenomenon of stochastic excitability in a stable equilibrium zone is demonstrated and studied. We show that the noise results in a sharp transition from low-amplitude stochastic oscillations to large-amplitude spike oscillations. For the parametric analysis of this phenomenon, the technique of stochastic sensitivity functions and the method of confidence ellipses are used. We study how the critical value of the noise intensity corresponding to the generation of large-amplitude oscillations depends on the proximity of a control parameter to a bifurcation point. For a detailed analysis of the frequency properties of stochastic oscillations, a statistical analysis of interspike intervals is carried out, and a phenomenon of coherent resonance is found.

  2. В статье рассматриваются применения теории нормальных форм к вопросам термодинамики неидеальных сред, описываемых термическими уравнениями состояния. Исходя из фундаментального уравнения Гиббса-Дюгема, вводится понятие контактной эквивалентности таких уравнений. Приводятся основные результаты формальной теории нормальных форм для контактных систем с полиномиальным квазиоднородным невозмущенным гамильтонианом, формулируются определение нормальной формы контактного гамильтониана и теорема о нормализации. С точки зрения приложений, рассматриваются модели смеси неидеальных газов и классической водородной плазмы. Для уравнения состояния смеси неидеальных газов, заданного в форме вириального разложения, показывается, что оно контактно эквивалентно уравнению состояния смеси идеальных газов. Кроме того, приводятся явные формулы для одного из возможных нормализующих преобразований. Нетривиальность физических эффектов, вносимых в модель идеальной среды резонансными возмущениями, иллюстрируется на примере возмущенного уравнения модели Дебая-Хюккеля водородной плазмы. Для этой модели находятся младшие члены возмущения в нормальной форме, и объясняется их физический смысл.

    In this article we consider applications of the theory of normal forms to the questions of thermodynamics of non-ideal media described by thermal equations of state. On the basis of the fundamental Gibbs-Duhem equation the notion of contact equivalence of such equations is introduced. Basic results from formal theory of normal forms for contact systems with a polynomial quasi-homogeneous unperturbed Hamiltonian are given, the definition of normal form of a contact Hamiltonian and the normalization theorem are formulated. From the application point of view, models for a mixture of non-ideal gases and classical hydrogen plasma are considered. For the equation of state of a mixture of non-ideal gases given in the form of a virial expansion it is shown that this equation is contact-equivalent to the equation of state of a mixture of ideal gases. Furthermore, explicit formulae for one of the possible normalizing transformations are given. Non-triviality of the physical effects that take place due to the impact of resonant perturbations on a model of ideal medium is illustrated by the example of perturbed equation for the Debye-Hückel model of hydrogen plasma. For this model the lowest terms of the perturbation in normal form are determined and their physical meaning is explained.

  3. Рассматриваются периодические по времени возмущения асимметричного уравнения маятникового типа, близкого к интегрируемому стандартному уравнению математического маятника. Для автономного уравнения решается проблема предельных циклов, которая сводится к исследованию порождающих функций Пуанкаре-Понтрягина. Строится разбиение плоскости параметров на области с разным поведением фазовых кривых. Даются основные фазовые портреты для каждой области полученного разбиения. Для неавтономного уравнения изучается вопрос о структуре резонансных зон, к которому приводит решение задачи о синхронизации колебаний. Вычисляются усредненные уравнения маятникового типа, описывающие поведение решений исходного уравнения в индивидуальных резонансных зонах, и проводится их анализ. Устанавливается глобальное поведение решений в ячейках, не содержащих малых окрестностей невозмущенных сепаратрис. С помощью аналитического метода Мельникова и численного моделирования изучаются основные бифуркации неавтономного уравнения, связанные с возникновением негрубых гомоклинических кривых. На плоскости основных параметров строится бифуркационная диаграмма для отображения Пуанкаре, порожденного исходным уравнением, описывающая различные типы гомоклинических касаний сепаратрис седловой неподвижной точки. Обнаруживаются гомоклинические зоны (те области параметров, для которых существуют гомоклинические траектории к седловой неподвижной точки) с негладкими бифуркационными границами.

    Time-periodic perturbations of an asymmetric pendulum-type equation close to an integrable standard equation of a mathematical pendulum are considered. For an autonomous equation, the problem of limit cycles, which reduces to the study of the Poincaré-Pontryagin generating functions, is solved. A partition of the parameter plane into domains with different behavior of the phase curves is constructed. Basic phase portraits for each domain of the obtained partition are given. For a nonautonomous equation, the question of the structure of the resonance zones, to which the solution of the problem of synchronization of oscillations leads, is studied. Averaged equations of the pendulum type, describing the behavior of solutions of the original equation in individual resonance zones, are calculated and analyzed. The global behavior of solutions in cells that do not contain small neighborhoods of unperturbed separatrices is ascertained. Using the analytical Melnikov method and numerical modeling, the basic bifurcations of the nonautonomous equation associated with the appearance of nonrough homoclinic curves are studied. On the plane of the main parameters, a bifurcation diagram for the Poincaré map generated by the original equation, describing different types of homoclinic tangencies of the separatrices of the saddle fixed point, is constructed. Homoclinic zones (those domains of parameters for which homoclinic trajectories to the saddle fixed point exist) with nonsmooth bifurcation boundaries are found.

  4. В настоящее время продолжают активно изучаться неэрмитовы топологические системы. В данной статье в строгом подходе изучена одна из ключевых неэрмитовых систем — модель Хатано–Нельсона $H$. Найдена функция Грина для этого гамильтониана. С помощью функции Грина аналитически получены собственные значения и собственные функции $H$ для конечных и полубесконечных цепей, а также для бесконечной цепи с локальным потенциалом. Обсуждается неэрмитов скин-эффект для упомянутых выше моделей. Также описана граница между локализованными и резонансными состояниями (при нулевой энергии — это граница между неэрмитовыми топологическими фазами).

    At present, non-Hermitian topological systems continue to be actively studed. In a rigorous approach, we study one of the key non-Hermitian systems — the Hatano–Nelson model $H$. We find the Green function for this Hamiltonian. Using the Green function, we analytically obtain the eigenvalues and eigenfunctions of $H$ for finite and semi-infinite chains, as well as for an infinite chain with a local potential. We discuss the non-Hermitian skin effect for the models mentioned above. We also describe the boundary between localized and resonant eigenfunctions (for the zero spectral parameter, this is the boundary between non-Hermitian topological phases).

  5. Рассматривается движение близкой к автономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Пусть значения параметров задачи таковы, что в системе реализуется одновременно двойной комбинационный резонанс третьего порядка и резонанс четвертого порядка. Решается вопрос о существовании и устойчивости резонансных периодических решений системы. Исследование проводится на примере задачи о движении динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите. В качестве невозмущенных рассматриваются периодические движения спутника, рождающиеся из его стационарных вращений на круговой орбите (гиперболоидальной и конической прецессий), для резонансных значений параметров. Проведена нормализация гамильтонианов возмущенного движения, определены положения равновесия приближенных (модельных) систем, методом Пуанкаре построены соответствующие резонансные периодические движения спутника в окрестности указанных невозмущенных движений, дана их геометрическая интерпретация. Выявлены неустойчивые периодические движения, а также движения, являющиеся устойчивыми для большинства (в смысле меры Лебега) начальных условий и формально устойчивыми.

    The motion of a near-autonomous time-periodic two-degree-of-freedom Hamiltonian system in the vicinity of a linearly stable trivial equilibrium is considered. The values of the problem parameters are supposed to be such that the system implements both a double combinational third-order resonance and a fourth-order resonance. The problem of existence and stability of resonant periodic motions of the system is considered. The study is carried out using as an example the problem of the motion of a dynamically symmetric satellite (a rigid body) relative to the center of mass in the central Newtonian gravitational field in an elliptical orbit with small eccentricity. The satellite's periodic motions generated from its stationary rotations in a circular orbit (hyperboloidal and conical precessions) for the resonant values of the parameters are considered as unperturbed ones. The normalization of the Hamiltonian functions of perturbed motion is performed, and the equilibrium positions of approximate (model) systems are determined. The corresponding resonant periodic motions of the satellite in the vicinity of these unperturbed motions are obtained by the Poincare method, and their geometric interpretation is given. The unstable periodic motions and the motions that are stable for the majority (in the sense of Lebesgue measure) of the initial conditions and formally stable are revealed.

  6. В статье рассматривается твердотельный волновой гироскоп - прибор, измеряющий проекцию угловой скорости на ось прибора. Основным элементом прибора является резонатор, в котором реализуется эффект инертности стоячих волн. Из-за различных дефектов материалов и технологий изготовления появляется взаимодействие основных рабочих колебаний и побочных деформаций в месте крепления, из-за чего появляются конструкционное демпфирование и, как следствие, дрейф стоячей волны. Предлагается исследовать вопросы конструкционного демпфирования в твердотельном волновом гироскопе и появления дрейфа волны с помощью модели в виде механической системы. В механической системе центральная масса моделирует крепежную ножку резонатора. Выводится математическая модель с помощью подхода Лагранжа. Механическая система описывается в декартовых координатах в общем виде для $N+1$ массы. Выбирается более удобная неинерциальная система координат, вращающаяся с некоторой угловой скоростью. Приводятся выкладки для получения математической модели в виде системы дифференциальных уравнений. Анализируется полученная математическая модель. Описываются дальнейшие пути исследования конструкционного демпфирования и дрейфа.

    This article is concerned with the hemispherical resonator gyroscope, a device for measurement of the projection of the angular speed to a device axis. The basic element of the device is a resonator in which the effect of inertness of standing waves is implemented. Various defects of materials and manufacturing techniques lead to an interaction between the main working fluctuations and collateral deformations in the location of fastening, resulting in construction damping and hence in the drift of a standing wave. Problems of constructional damping in the hemispherical resonator gyroscope and emergence of drift of a wave by means of modeling in the form of a mechanical system are investigated. A mathematical model is derived using Lagrange's approach. A mechanical system is described in Cartesian coordinates in general form for the $N+1$ mass. In the mechanical system, the central weight models a fixing leg of the resonator. A more convenient coordinate system for the description of the mechanical system is chosen. Calculations for obtaining a mathematical model in the form of a system of differential equations are carried out. The resulting mathematical model is analyzed. Avenues of further research on a construction damping and drift are described.

  7. Топологический изолятор - особый тип материала, который внутри («в объеме») представляет собой изолятор, а на поверхности проводит электрический ток. Простейшим топологическим изолятором является конечная цепочка атомов в полиацетилене. Тематика топологических изоляторов в рамках физики твердого тела очень актуальна в последнее время. Большой интерес в физической литературе к топологическим изоляторам (а также похожим на них в смысле топологии сверхпроводящим системам) в значительной степени вызван наличием связи, «соответствием» между «объемом» и «границей». В данной статье рассматривается дискретная модель SSH (Su-Schrieffer-Heeger) для полиацетилена, описывающая электрон в одномерной цепочке атомов с двумя чередующимися амплитудами перехода на соседний атом. Найдены резольвента и спектр рассматриваемого оператора. Исследованы квазиуровни (собственные значения и резонансы) в случае малого потенциала. Кроме того, найдено решение уравнения Липпмана-Швингера и получены асимптотические формулы для вероятностей прохождения и отражения в случае малого возмущения.

    Tinyukova T.S.
    Scattering and quasilevels in the SSH model, pp. 257-266

    Topological insulator is a special type of material that represents an insulator in the interior (“in bulk”) and conducts electricity on the surface. The simplest topological insulator is a finite chain of atoms in polyacetylene. In the last decade topological insulators are actively studied in the physics literature. A great interest to topological insulators (and also to topologically similar superconducting systems) is due to the presence of a link between “volume” and “boundary”. In this article, we have studied the discrete model SSH (Su-Schrieffer-Heeger) for polyacetylene. This model describes an electron in a one-dimensional chain of atoms with two alternating amplitudes of the transition to a neighboring atom. We have found the spectrum and resolution of this operator. The quasilevels (eigenvalues and resonances) in the case of a small potential have been investigated. In addition, we obtained a solution of the Lippmann-Schwinger equation and asymptotic formulas for the probability of transmission and reflection in case of small perturbation.

  8. Рассматриваются движения близкой к автономной периодической по времени гамильтоновой системе с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Предполагается, что в системе реализуется двойной, основной и комбинационный, резонанс третьего порядка, при этом комбинационный резонанс может быть сильным или слабым. В обоих случаях в полной нелинейной системе указанное равновесие неустойчиво. Проведена нормализация гамильтонианов возмущенного движения в членах до четвертого порядка включительно относительно возмущений с учетом имеющихся резонансов. Решен вопрос о существовании и числе положений равновесия соответствующих приближенных (модельных) систем, найдены достаточные и необходимые условия их устойчивости. Методом малого параметра Пуанкаре построены периодические движения исходных полных систем, рождающиеся из положений равновесия модельных систем. Решен вопрос об их устойчивости в линейном приближении. В частности, получены условия существования (в малой окрестности неустойчивого тривиального равновесия) устойчивых (в линейном приближении) периодических движений.

    The paper considers the motion of a near-autonomous time-periodic two-degree-of-freedom Hamiltonian system in a neighborhood of trivial equilibrium being stable in the linear approximation. The third-order double resonance (fundamental and Raman) is assumed to occur in the system, at that Raman resonance can be strong or weak. In both cases the equilibrium considered is unstable in a full nonlinear system. Normalization of Hamiltonians of the perturbed motion is carried out in the terms up to the fourth order with respect to disturbance, taking into account the existing resonances. The problem of the existence and number of equilibrium positions of the corresponding approximate (model) systems is solved, and sufficient and necessary conditions for their stability are obtained. By Poincare's small parameter method, periodic motions of the initial full systems generated from the equilibrium positions of the model systems are constructed. The question of their stability in the linear approximation is solved. In particular, the conditions of the existence of stable (in the linear approximation) periodic motions in a small neighborhood of the unstable trivial equilibrium are obtained.

  9. Рассматриваются движения неавтономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Предполагается, что в системе реализуется кратный (двойной или тройной) резонанс четвертого порядка. Дан перечень всех возможных наборов характеристических показателей, соответствующих указанным резонансным случаям. Получены пять качественно различных приближенных (модельных) гамильтонианов, отвечающих данным наборам. Для всех рассматриваемых случаев кратных резонансов получены достаточные условия формальной устойчивости тривиального равновесия полной системы, записанные в виде ограничений на коэффициенты форм четвертой степени в нормализованных гамильтонианах возмущенного движения, дана графическая интерпретация этих условий. Показано, что полученные области формальной устойчивости содержатся внутри областей устойчивости каждого имеющегося сильного резонанса, рассматриваемого по отдельности, а резонансные коэффициенты, отвечающие слабым резонансам, должны принимать значения из ограниченного диапазона. Рассмотрены некоторые вопросы о неустойчивости тривиального равновесия системы в случаях кратных резонансов четвертого порядка. Найденные условия формальной устойчивости проверены в точках кратных резонансов четвертого порядка в задаче об устойчивости цилиндрической прецессии динамически симметричного спутника-пластинки в центральном ньютоновском гравитационном поле на эллиптической орбите произвольного эксцентриситета.

    We consider the motion of a nonautonomous time-periodic two-degree-of-freedom Hamiltonian system in the vicinity of a trivial equilibrium being stable in the linear approximation. Fourth-order multiple (double or triple) resonance is assumed to be realized in the system. A list of all possible characteristic exponent sets corresponding to these resonant cases is given. Five qualitatively different approximate (model) Hamiltonian functions corresponding to these sets are obtained. For all cases of multiple resonances under study, sufficient conditions for the formal stability of the trivial equilibrium of the complete system are obtained, written as constraints on the coefficients of forms of the fourth degree in the normalized Hamiltonian functions of perturbed motion. A graphical interpretation of these conditions is given. The regions of formal stability are shown to be contained within the stability regions of each existing strong resonance considered separately, and the resonance coefficients corresponding to the weak resonances should take values from a limited range. Some questions of instability of the trivial equilibrium of the system in cases of multiple fourth-order resonances are considered. The found conditions of formal stability are examined at the points of multiple fourth-order resonances in the stability problem of cylindrical precession of a dynamically symmetric satellite-plate in the central Newtonian gravitational field on an elliptical orbit of arbitrary eccentricity.

  10. В статье рассматриваются вопросы моделирования твердотельного волнового гироскопа. Приводятся общие сведения о работе данного прибора. Описываются параметры, которые определяют класс точности прибора. Рассматриваются причины ухудшения точности прибора. Описываются особенности применения разных математических моделей твердотельного волнового гироскопа. В статье предлагается рассматривать модель в виде парциального осциллятора. Исходная модель содержит «быстроменяющиеся» компоненты. Работа твердотельного волнового гироскопа основана на измерении соотношения амплитуд колебаний различных секторов резонатора. Для имитационного моделирования систем удобнее исключить из исходной модели высокочастотные изменения и оставить зависимость между медленноменяющимися амплитудами. Для приведения модели к более удобному виду обосновывается возможность применения теоремы Боголюбова. Проводятся общие выкладки для полученной модели в «медленных» переменных. Описываются важные аспекты применения модели и ее ограничения. Полученная модель подходит для целей имитационного моделирования гироскопических систем.

    The paper refers to the issues of designing a hemispherical resonator gyroscope. General information on the operation of this kind of device is given. Parameters that determine the accuracy class of the device are described. Causes of degradation of the device accuracy are examined. The features of application of different mathematical models of hemispherical resonator gyroscope are described. The author proposes to examine a model as a partial oscillator. An initial model contains “fast-changing” components. Operation of hemispherical resonator gyroscope is based on measuring the correlation between amplitudes of vibrations in different sectors of resonator. For the simulation modeling of systems it is more convenient to exclude high-frequency changes from the initial model, and to leave dependence between slowly changing amplitudes. In order to bring a model to a more suitable form, it is possible to apply the theorem of Bogolyubov. General calculations for constructing a model in “slow” variables are established. Important aspects of its application and restrictions are described. Obtained model is appropriate for simulation modeling of gyro systems.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref